1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
/* Copyright 2008, Google Inc.
* Translated to Myrddin by Ori Bernstein in 2018
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation.
*/
use std
pkg crypto =
const fdiff : (out : felem[:], in : felem[:] -> void)
;;
type felem = uint64
/* Sum two numbers: out += in */
const fsum = {out, in
for var i = 0; i < 10; i += 2
out[0 + i] = out[0 + i] + in[0 + i]
out[1 + i] = out[1 + i] + in[1 + i]
;;
}
/* Find the difference of two numbers: out = in - out
* (note the order of the arguments!)
*/
const fdiff = {out, in
for var i = 0; i < 10; i++
out[i] = (in[i] - out[i])
;;
}
/* Multiply a number my a scalar: out = in * scalar */
const fscalarproduct = {out, in, scalar
for var i = 0; i < 10; i++
out[i] = in[i] * scalar
;;
}
/* Multiply two numbers: out = in2 * in
*
* out must be distinct to both ins. The ins are reduced coefficient
* form, the out is not.
*/
const fproduct = {out, in, in2
out[0] = in2[0] * in[0]
out[1] = in2[0] * in[1] + \
in2[1] * in[0]
out[2] = 2 * in2[1] * in[1] + \
in2[0] * in[2] + \
in2[2] * in[0]
out[3] = in2[1] * in[2] + \
in2[2] * in[1] + \
in2[0] * in[3] + \
in2[3] * in[0]
out[4] = in2[2] * in[2] + \
2 * (in2[1] * in[3] + \
in2[3] * in[1]) + \
in2[0] * in[4] + \
in2[4] * in[0]
out[5] = in2[2] * in[3] + \
in2[3] * in[2] + \
in2[1] * in[4] + \
in2[4] * in[1] + \
in2[0] * in[5] + \
in2[5] * in[0]
out[6] = 2 * (in2[3] * in[3] + \
in2[1] * in[5] + \
in2[5] * in[1]) + \
in2[2] * in[4] + \
in2[4] * in[2] + \
in2[0] * in[6] + \
in2[6] * in[0]
out[7] = in2[3] * in[4] + \
in2[4] * in[3] + \
in2[2] * in[5] + \
in2[5] * in[2] + \
in2[1] * in[6] + \
in2[6] * in[1] + \
in2[0] * in[7] + \
in2[7] * in[0]
out[8] = in2[4] * in[4] + \
2 * (in2[3] * in[5] + \
in2[5] * in[3] + \
in2[1] * in[7] + \
in2[7] * in[1]) + \
in2[2] * in[6] + \
in2[6] * in[2] + \
in2[0] * in[8] + \
in2[8] * in[0]
out[9] = in2[4] * in[5] + \
in2[5] * in[4] + \
in2[3] * in[6] + \
in2[6] * in[3] + \
in2[2] * in[7] + \
in2[7] * in[2] + \
in2[1] * in[8] + \
in2[8] * in[1] + \
in2[0] * in[9] + \
in2[9] * in[0]
out[10] = 2 * (in2[5] * in[5] + \
in2[3] * in[7] + \
in2[7] * in[3] + \
in2[1] * in[9] + \
in2[9] * in[1]) + \
in2[4] * in[6] + \
in2[6] * in[4] + \
in2[2] * in[8] + \
in2[8] * in[2]
out[11] = in2[5] * in[6] + \
in2[6] * in[5] + \
in2[4] * in[7] + \
in2[7] * in[4] + \
in2[3] * in[8] + \
in2[8] * in[3] + \
in2[2] * in[9] + \
in2[9] * in[2]
out[12] = in2[6] * in[6] + \
2 * (in2[5] * in[7] + \
in2[7] * in[5] + \
in2[3] * in[9] + \
in2[9] * in[3]) + \
in2[4] * in[8] + \
in2[8] * in[4]
out[13] = in2[6] * in[7] + \
in2[7] * in[6] + \
in2[5] * in[8] + \
in2[8] * in[5] + \
in2[4] * in[9] + \
in2[9] * in[4]
out[14] = 2 * (in2[7] * in[7] + \
in2[5] * in[9] + \
in2[9] * in[5]) + \
in2[6] * in[8] + \
in2[8] * in[6]
out[15] = in2[7] * in[8] + \
in2[8] * in[7] + \
in2[6] * in[9] + \
in2[9] * in[6]
out[16] = in2[8] * in[8] + \
2 * (in2[7] * in[9] + \
in2[9] * in[7])
out[17] = in2[8] * in[9] + \
in2[9] * in[8]
out[18] = 2 * in2[9] * in[9]
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19. */
const freducedegree= {out
out[8] += 19 * out[18];
out[7] += 19 * out[17];
out[6] += 19 * out[16];
out[5] += 19 * out[15];
out[4] += 19 * out[14];
out[3] += 19 * out[13];
out[2] += 19 * out[12];
out[1] += 19 * out[11];
out[0] += 19 * out[10];
}
/* Reduce all coeff of the short form in to be -2**25 <= x <= 2**25
*/
const freducecoeff = {out
var over, over2
while true
out[10] = 0
for var i = 0; i < 10; i += 2
over = out[i] / (0x2000000l : felem)
over2 = (over + ((over >> 63) * 2) + 1) / 2
out[i+1] += over2
out[i] -= over2 * (0x4000000l : felem)
over = out[i+1] / 0x2000000
out[i+2] += over
out[i+1] -= over * 0x2000000
;;
out[0] += 19 * out[10]
if out[10] == 0
break
;;
;;
}
/* A helpful wrapper around fproduct: out = in * in2.
*
* out must be distinct to both ins. The out is reduced degree and
* reduced coefficient.
*/
const fmul = {out, in, in2
var t : felem[19]
fproduct(t[:], in, in2)
freducedegree(t[:])
freducecoeff(t[:])
std.slcp(out, t[:10])
}
const fsquareinner = {out, in
var tmp : felem
out[0] = in[0] * in[0]
out[1] = 2 * in[0] * in[1]
out[2] = 2 * (in[1] * in[1] + \
in[0] * in[2])
out[3] = 2 * (in[1] * in[2] + \
in[0] * in[3])
out[4] = in[2] * in[2] + \
4 * in[1] * in[3] + \
2 * in[0] * in[4]
out[5] = 2 * (in[2] * in[3] + \
in[1] * in[4] + \
in[0] * in[5])
out[6] = 2 * (in[3] * in[3] + \
in[2] * in[4] + \
in[0] * in[6] + \
2 * in[1] * in[5])
out[7] = 2 * (in[3] * in[4] + \
in[2] * in[5] + \
in[1] * in[6] + \
in[0] * in[7])
tmp = in[1] * in[7] + in[3] * in[5]
out[8] = in[4] * in[4] + \
2 * (in[2] * in[6] + \
in[0] * in[8] + \
2 * tmp)
out[9] = 2 * (in[4] * in[5] + \
in[3] * in[6] + \
in[2] * in[7] + \
in[1] * in[8] + \
in[0] * in[9])
tmp = in[3] * in[7] + in[1] * in[9]
out[10] = 2 * (in[5] * in[5] + \
in[4] * in[6] + \
in[2] * in[8] + \
2 * tmp)
out[11] = 2 * (in[5] * in[6] + \
in[4] * in[7] + \
in[3] * in[8] + \
in[2] * in[9])
out[12] = in[6] * in[6] + \
2 * (in[4] * in[8] + \
2 * (in[5] * in[7] + \
in[3] * in[9]))
out[13] = 2 * (in[6] * in[7] + \
in[5] * in[8] + \
in[4] * in[9])
out[14] = 2 * (in[7] * in[7] + \
in[6] * in[8] + \
2 * in[5] * in[9])
out[15] = 2 * (in[7] * in[8] + \
in[6] * in[9])
out[16] = in[8] * in[8] + \
4 * in[7] * in[9]
out[17] = 2 * in[8] * in[9]
out[18] = 2 * in[9] * in[9]
}
const fsquare = {out, in
var t : felem[19]
fsquareinner(t[:], in)
freducedegree(t[:])
freducecoeff(t[:])
std.slcp(out, t[:10])
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
const fexpand = {out, in
/*
* #define F(n,start,shift,mask) \
* out[n] = (((in[start + 0] : felem) | \
* (in[start + 1] : felem) << 8 | \
* (in[start + 2] : felem) << 16 | \
* (in[start + 3] : felem) << 24) >> shift) & mask
* F(0, 0, 0, 0x3ffffff)
* F(1, 3, 2, 0x1ffffff)
* F(2, 6, 3, 0x3ffffff)
* F(3, 9, 5, 0x1ffffff)
* F(4, 12, 6, 0x3ffffff)
* F(5, 16, 0, 0x1ffffff)
* F(6, 19, 1, 0x3ffffff)
* F(7, 22, 3, 0x1ffffff)
* F(8, 25, 4, 0x3ffffff)
* F(9, 28, 6, 0x1ffffff)
* #undef F
*/
out[0] = (((in[0 + 0] : felem) | (in[0 + 1] : felem) << 8 | (in[0 + 2] : felem) << 16 | (in[0 + 3] : felem) << 24) >> 0) & 0x3ffffff
out[1] = (((in[3 + 0] : felem) | (in[3 + 1] : felem) << 8 | (in[3 + 2] : felem) << 16 | (in[3 + 3] : felem) << 24) >> 2) & 0x1ffffff
out[2] = (((in[6 + 0] : felem) | (in[6 + 1] : felem) << 8 | (in[6 + 2] : felem) << 16 | (in[6 + 3] : felem) << 24) >> 3) & 0x3ffffff
out[3] = (((in[9 + 0] : felem) | (in[9 + 1] : felem) << 8 | (in[9 + 2] : felem) << 16 | (in[9 + 3] : felem) << 24) >> 5) & 0x1ffffff
out[4] = (((in[12 + 0] : felem) | (in[12 + 1] : felem) << 8 | (in[12 + 2] : felem) << 16 | (in[12 + 3] : felem) << 24) >> 6) & 0x3ffffff
out[5] = (((in[16 + 0] : felem) | (in[16 + 1] : felem) << 8 | (in[16 + 2] : felem) << 16 | (in[16 + 3] : felem) << 24) >> 0) & 0x1ffffff
out[6] = (((in[19 + 0] : felem) | (in[19 + 1] : felem) << 8 | (in[19 + 2] : felem) << 16 | (in[19 + 3] : felem) << 24) >> 1) & 0x3ffffff
out[7] = (((in[22 + 0] : felem) | (in[22 + 1] : felem) << 8 | (in[22 + 2] : felem) << 16 | (in[22 + 3] : felem) << 24) >> 3) & 0x1ffffff
out[8] = (((in[25 + 0] : felem) | (in[25 + 1] : felem) << 8 | (in[25 + 2] : felem) << 16 | (in[25 + 3] : felem) << 24) >> 4) & 0x3ffffff
out[9] = (((in[28 + 0] : felem) | (in[28 + 1] : felem) << 8 | (in[28 + 2] : felem) << 16 | (in[28 + 3] : felem) << 24) >> 6) & 0x1ffffff
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array
*/
const fcontract = {out, in
while true
for var i = 0; i < 9; ++i
if (i & 1) == 1
while in[i] < 0
in[i] += 0x2000000
in[i + 1]--
;;
else
while in[i] < 0
in[i] += 0x4000000
in[i + 1]--
;;
;;
;;
while in[9] < 0
in[9] += 0x2000000
in[0] -= 19
;;
if in[0] >= 0
break
;;
;;
in[1] <<= 2
in[2] <<= 3
in[3] <<= 5
in[4] <<= 6
in[6] <<= 1
in[7] <<= 3
in[8] <<= 4
in[9] <<= 6
/*
* #define F(i, s) \
* out[s+0] |= in[i] & 0xff; \
* out[s+1] = (in[i] >> 8) & 0xff; \
* out[s+2] = (in[i] >> 16) & 0xff; \
* out[s+3] = (in[i] >> 24) & 0xff
* out[0] = 0
* out[16] = 0
* F(0,0)
* F(1,3)
* F(2,6)
* F(3,9)
* F(4,12)
* F(5,16)
* F(6,19)
* F(7,22)
* F(8,25)
* F(9,28)
* #undef F
*/
out[0] = 0
out[16] = 0
out[ 0 + 0] |= (in[0] : byte); out[ 0 +1] = (in[0] >> 8 : byte); out[ 0 +2] = (in[0] >> 16 : byte); out[ 0 +3] = (in[0] >> 24 : byte)
out[ 3 + 0] |= (in[1] : byte); out[ 3 +1] = (in[1] >> 8 : byte); out[ 3 +2] = (in[1] >> 16 : byte); out[ 3 +3] = (in[1] >> 24 : byte)
out[ 6 + 0] |= (in[2] : byte); out[ 6 +1] = (in[2] >> 8 : byte); out[ 6 +2] = (in[2] >> 16 : byte); out[ 6 +3] = (in[2] >> 24 : byte)
out[ 9 + 0] |= (in[3] : byte); out[ 9 +1] = (in[3] >> 8 : byte); out[ 9 +2] = (in[3] >> 16 : byte); out[ 9 +3] = (in[3] >> 24 : byte)
out[12 + 0] |= (in[4] : byte); out[12 +1] = (in[4] >> 8 : byte); out[12 +2] = (in[4] >> 16 : byte); out[12 +3] = (in[4] >> 24 : byte)
out[16 + 0] |= (in[5] : byte); out[16 +1] = (in[5] >> 8 : byte); out[16 +2] = (in[5] >> 16 : byte); out[16 +3] = (in[5] >> 24 : byte)
out[19 + 0] |= (in[6] : byte); out[19 +1] = (in[6] >> 8 : byte); out[19 +2] = (in[6] >> 16 : byte); out[19 +3] = (in[6] >> 24 : byte)
out[22 + 0] |= (in[7] : byte); out[22 +1] = (in[7] >> 8 : byte); out[22 +2] = (in[7] >> 16 : byte); out[22 +3] = (in[7] >> 24 : byte)
out[25 + 0] |= (in[8] : byte); out[25 +1] = (in[8] >> 8 : byte); out[25 +2] = (in[8] >> 16 : byte); out[25 +3] = (in[8] >> 24 : byte)
out[28 + 0] |= (in[9] : byte); out[28 +1] = (in[9] >> 8 : byte); out[28 +2] = (in[9] >> 16 : byte); out[28 +3] = (in[9] >> 24 : byte)
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form, out 2Q
* x3 z3: long form, out Q + Q'
* x z: short form, destroyed, in Q
* xprime zprime: short form, destroyed, in Q'
* qmqp: short form, preserved, in Q - Q'
*/
const fmonty = {x2, z2, x3, z3, x, z, xprime, zprime, qmqp
var origx : felem[10]
var origxprime : felem[10]
var zzz : felem [19]
var xx : felem[19]
var zz : felem[19]
var xxprime : felem[19]
var zzprime : felem[19]
var zzzprime : felem[19]
var xxxprime : felem[19]
std.slcp(origx[:], x[:10])
fsum(x, z)
fdiff(z, origx[:]); // does x - z
std.slcp(origxprime[:], xprime[:10])
fsum(xprime, zprime)
fdiff(zprime, origxprime[:])
fproduct(xxprime[:], xprime, z)
fproduct(zzprime[:], x, zprime)
freducedegree(xxprime[:])
freducecoeff(xxprime[:])
freducedegree(zzprime[:])
freducecoeff(zzprime[:])
std.slcp(origxprime[:], xxprime[:10])
fsum(xxprime[:], zzprime[:])
fdiff(zzprime[:], origxprime[:])
fsquare(xxxprime[:], xxprime[:])
fsquare(zzzprime[:], zzprime[:])
fproduct(zzprime[:], zzzprime[:], qmqp)
freducedegree(zzprime[:])
freducecoeff(zzprime[:])
std.slcp(x3, xxxprime[:10])
std.slcp(z3, zzprime[:10])
fsquare(xx[:], x)
fsquare(zz[:], z)
fproduct(x2, xx[:], zz[:])
freducedegree(x2)
freducecoeff(x2)
fdiff(zz[:], xx[:]); // does zz = xx - zz
std.slfill(zzz[10:], 0)
fscalarproduct(zzz, zz, 121665)
freducedegree(zzz[:])
freducecoeff(zzz[:])
fsum(zzz[:], xx[:])
fproduct(z2, zz[:], zzz[:])
freducedegree(z2)
freducecoeff(z2)
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form)
*/
const cmult = {resultx, resultz, n, q
var a : felem[19] = [0:0, 18:0]
var b : felem[19] = [0:1, 18:0]
var c : felem[19] = [0:1, 18:0]
var d : felem[19] = [0:0, 18:0]
var e : felem[19] = [0:0, 18:0]
var f : felem[19] = [0:1, 18:0]
var g : felem[19] = [0:0, 18:0]
var h : felem[19] = [0:1, 18:0]
var nqpqx = a[:]
var nqpqz = b[:]
var nqx = c[:]
var nqz = d[:]
var nqpqx2 = e[:]
var nqpqz2 = f[:]
var nqx2 = g[:]
var nqz2 = h[:]
var t
std.slcp(nqpqx[:10], q[:10])
for var i = 0; i < 32; ++i
var byte = n[31 - i]
for var j = 0; j < 8; ++j
if byte & 0x80 != 0
fmonty(nqpqx2, nqpqz2,
nqx2, nqz2,
nqpqx, nqpqz,
nqx, nqz,
q)
else
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q)
;;
t = nqx
nqx = nqx2
nqx2 = t
t = nqz
nqz = nqz2
nqz2 = t
t = nqpqx
nqpqx = nqpqx2
nqpqx2 = t
t = nqpqz
nqpqz = nqpqz2
nqpqz2 = t
byte <<= 1
;;
;;
std.slcp(resultx, nqx[:10])
std.slcp(resultz, nqz[:10])
}
// -----------------------------------------------------------------------------
// Shamelessly copied from djb's code
// -----------------------------------------------------------------------------
const crecip = {out, z
var z2 : felem[10]
var z9 : felem[10]
var z11 : felem[10]
var z2_5_0 : felem[10]
var z2_10_0 : felem[10]
var z2_20_0 : felem[10]
var z2_50_0 : felem[10]
var z2_100_0 : felem[10]
var t0 : felem[10]
var t1 : felem[10]
var i
/* 2 */ fsquare(z2[:], z[:])
/* 4 */ fsquare(t1[:], z2[:])
/* 8 */ fsquare(t0[:], t1[:])
/* 9 */ fmul(z9[:] ,t0[:], z[:])
/* 11 */ fmul(z11[:], z9[:], z2[:])
/* 22 */ fsquare(t0[:], z11[:])
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0[:], t0[:], z9[:])
/* 2^6 - 2^1 */ fsquare(t0[:], z2_5_0[:])
/* 2^7 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^8 - 2^3 */ fsquare(t0[:], t1[:])
/* 2^9 - 2^4 */ fsquare(t1[:], t0[:])
/* 2^10 - 2^5 */ fsquare(t0[:],t1[:])
/* 2^10 - 2^0 */ fmul(z2_10_0[:], t0[:], z2_5_0[:])
/* 2^11 - 2^1 */ fsquare(t0[:], z2_10_0[:])
/* 2^12 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^20 - 2^10 */
for i = 2;i < 10;i += 2
fsquare(t0[:],t1[:])
fsquare(t1[:],t0[:])
;;
/* 2^20 - 2^0 */ fmul(z2_20_0[:], t1[:], z2_10_0[:])
/* 2^21 - 2^1 */ fsquare(t0[:], z2_20_0[:])
/* 2^22 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^40 - 2^20 */
for var i = 2;i < 20;i += 2
fsquare(t0[:], t1[:])
fsquare(t1[:], t0[:])
;;
/* 2^40 - 2^0 */ fmul(t0[:], t1[:], z2_20_0[:])
/* 2^41 - 2^1 */ fsquare(t1[:],t0[:])
/* 2^42 - 2^2 */ fsquare(t0[:],t1[:])
/* 2^50 - 2^10 */
for var i = 2;i < 10;i += 2
fsquare(t1[:],t0[:])
fsquare(t0[:],t1[:])
;;
/* 2^50 - 2^0 */ fmul(z2_50_0[:], t0[:], z2_10_0[:])
/* 2^51 - 2^1 */ fsquare(t0[:], z2_50_0[:])
/* 2^52 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^100 - 2^50 */
for i = 2;i < 50;i += 2
fsquare(t0[:],t1[:])
fsquare(t1[:],t0[:])
;;
/* 2^100 - 2^0 */ fmul(z2_100_0[:], t1[:], z2_50_0[:])
/* 2^101 - 2^1 */ fsquare(t1[:], z2_100_0[:])
/* 2^102 - 2^2 */ fsquare(t0[:], t1[:])
/* 2^200 - 2^100 */
for i = 2;i < 100;i += 2
fsquare(t1[:],t0[:])
fsquare(t0[:],t1[:])
;;
/* 2^200 - 2^0 */ fmul(t1[:],t0[:], z2_100_0[:])
/* 2^201 - 2^1 */ fsquare(t0[:], t1[:])
/* 2^202 - 2^2 */ fsquare(t1[:], t0[:])
/* 2^250 - 2^50 */
for i = 2;i < 50;i += 2
fsquare(t0[:], t1[:])
fsquare(t1[:], t0[:])
;;
/* 2^250 - 2^0 */ fmul(t0[:], t1[:], z2_50_0[:])
/* 2^251 - 2^1 */ fsquare(t1[:], t0[:])
/* 2^252 - 2^2 */ fsquare(t0[:], t1[:])
/* 2^253 - 2^3 */ fsquare(t1[:], t0[:])
/* 2^254 - 2^4 */ fsquare(t0[:], t1[:])
/* 2^255 - 2^5 */ fsquare(t1[:], t0[:])
/* 2^255 - 21 */ fmul(out,t1[:], z11[:])
}
const curve25519 = {pub : byte[:/*32*/], secret : byte[:/*32*/], basepoint : byte[:/*32*/]
var bp : felem[10]
var x : felem[10]
var z : felem[10]
var zmone : felem[10]
std.assert(pub.len == 32 && secret.len == 32 && basepoint.len == 32, "wrong key sizes")
fexpand(bp[:], basepoint[:])
cmult(x[:], z[:], secret[:], bp[:])
crecip(zmone[:], z[:])
fmul(z[:], x[:], zmone[:])
fcontract(pub[:], z[:])
}
|