1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
use std
pkg math =
const flt32fromflt64 : (f : flt64 -> flt32)
const flt64fromflt32 : (x : flt32 -> flt64)
/* For use in various normalizations */
const find_first1_64 : (b : uint64, start : int64 -> int64)
const find_first1_64_hl : (h : uint64, l : uint64, start : int64 -> int64)
/* >> and <<, but without wrapping when the shift is >= 64 */
const shr : (u : uint64, s : int64 -> uint64)
const shl : (u : uint64, s : int64 -> uint64)
/* Whether RN() requires incrementing after truncating */
const need_round_away : (h : uint64, l : uint64, bitpos_last : int64 -> bool)
/* Multiply x * y to z1 + z2 */
const two_by_two : (x : flt64, y : flt64 -> (flt64, flt64))
/* Return (s, t) such that s + t = a + b, with s = rn(a + b). */
generic fast2sum : (x : @f, y : @f -> (@f, @f)) :: floating, numeric @f
/* Rounds a + b (as flt64s) to a flt32. */
const round_down : (a : flt64, b : flt64 -> flt32)
;;
/* Split precision down the middle */
const twentysix_bits_mask = (0xffffffffffffffff << 27)
const flt64fromflt32 = {f : flt32
var n, e, s
(n, e, s) = std.flt32explode(f)
var xs : uint64 = (s : uint64)
var xe : int64 = (e : int64)
if e == 128
-> std.flt64assem(n, 1024, xs)
elif e == -127
/*
All subnormals in single precision (except 0.0s)
can be upgraded to double precision, since the
exponent range is so much wider.
*/
var first1 = find_first1_64(xs, 23)
if first1 < 0
-> std.flt64assem(n, -1023, 0)
;;
xs = xs << (52 - (first1 : uint64))
xe = -126 - (23 - first1)
-> std.flt64assem(n, xe, xs)
;;
-> std.flt64assem(n, xe, xs << (52 - 23))
}
const flt32fromflt64 = {f : flt64
var n : bool, e : int64, s : uint64
(n, e, s) = std.flt64explode(f)
var ts : uint32
var te : int32 = (e : int32)
if e >= 128
if e == 1023 && s != 0
/* NaN */
-> std.flt32assem(n, 128, 1)
else
/* infinity */
-> std.flt32assem(n, 128, 0)
;;
;;
if e >= -127
/* normal */
ts = ((s >> (52 - 23)) : uint32)
if need_round_away(0, s, 52 - 23)
ts++
if ts & (1 << 24) != 0
ts >>= 1
te++
;;
;;
if te >= -126
-> std.flt32assem(n, te, ts)
;;
;;
/* subnormal already, will have to go to 0 */
if e == -1023
-> std.flt32assem(n, -127, 0)
;;
/* subnormal (at least, it will be) */
te = -127
var shift : int64 = (52 - 23) + (-126 - e)
var ts1 = shr(s, shift)
ts = (ts1 : uint32)
if need_round_away(0, s, shift)
ts++
if ts & (1 << 23) != 0
/* false alarm, it's normal again */
te++
;;
;;
-> std.flt32assem(n, te, ts)
}
/* >> and <<, but without wrapping when the shift is >= 64 */
const shr = {u : uint64, s : int64
if (s : uint64) >= 64
-> 0
else
-> u >> (s : uint64)
;;
}
const shl = {u : uint64, s : int64
if (s : uint64) >= 64
-> 0
else
-> u << (s : uint64)
;;
}
/* Find the first 1 bit in a bitstring */
const find_first1_64 = {b : uint64, start : int64
for var j = start; j >= 0; --j
var m = shl(1, j)
if b & m != 0
-> j
;;
;;
-> -1
}
const find_first1_64_hl = {h, l, start
var first1_h = find_first1_64(h, start - 64)
if first1_h >= 0
-> first1_h + 64
;;
-> find_first1_64(l, 63)
}
/*
For [ h ][ l ], where bitpos_last is the position of the last
bit that was included in the truncated result (l's last bit has
position 0), decide whether rounding up/away is needed. This is
true if
- following bitpos_last is a 1, then a non-zero sequence, or
- following bitpos_last is a 1, then a zero sequence, and the
round would be to even
*/
const need_round_away = {h : uint64, l : uint64, bitpos_last : int64
var first_omitted_is_1 = false
var nonzero_beyond = false
if bitpos_last > 64
first_omitted_is_1 = h & shl(1, bitpos_last - 1 - 64) != 0
nonzero_beyond = nonzero_beyond || h & shr((-1 : uint64), 2 + 64 - (bitpos_last - 64)) != 0
nonzero_beyond = nonzero_beyond || (l != 0)
else
first_omitted_is_1 = l & shl(1, bitpos_last - 1) != 0
nonzero_beyond = nonzero_beyond || l & shr((-1 : uint64), 1 + 64 - bitpos_last) != 0
;;
if !first_omitted_is_1
-> false
;;
if nonzero_beyond
-> true
;;
var hl_is_odd = false
if bitpos_last >= 64
hl_is_odd = h & shl(1, bitpos_last - 64) != 0
else
hl_is_odd = l & shl(1, bitpos_last) != 0
;;
-> hl_is_odd
}
/*
Perform high-prec multiplication: x * y = z1 + z2.
*/
const two_by_two = {x : flt64, y : flt64
var xh : flt64 = std.flt64frombits(std.flt64bits(x) & twentysix_bits_mask)
var xl : flt64 = x - xh
var yh : flt64 = std.flt64frombits(std.flt64bits(y) & twentysix_bits_mask)
var yl : flt64 = y - yh
/* Multiply out */
var a1 : flt64 = xh * yh
var a2 : flt64 = xh * yl
var a3 : flt64 = xl * yh
var a4 : flt64 = xl * yl
/* By-hand compensated summation */
var yy, u, t, v, z, s, c
if a2 < a3
std.swap(&a3, &a2)
;;
s = a1
c = 0.0
/* a2 */
(s, c) = fast2sum(s, a2)
/* a3 */
(yy, u) = fast2sum(c, a3)
(t, v) = fast2sum(s, yy)
z = u + v
(s, c) = fast2sum(t, z)
/* a4 */
(yy, u) = fast2sum(c, a4)
(t, v) = fast2sum(s, yy)
z = u + v
(s, c) = fast2sum(t, z)
-> (s, c)
}
/* Return (s, t) such that s + t = a + b, with s = rn(a + b). */
generic fast2sum = {a : @f, b : @f :: floating, numeric @f
var s = a + b
var z = s - a
var t = b - z
-> (s, t)
}
/*
Round a + b to a flt32. Only notable if round(a) is a rounding
tie, and b is non-zero
*/
const round_down = {a : flt64, b : flt64
var au : uint64 = std.flt64bits(a)
if au & 0x0000000070000000 == 0x0000000070000000
if b > 0.0
au++
elif b < 0.0
au--
;;
-> (std.flt64frombits(au) : flt32)
;;
-> (a : flt32)
}
|